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for the solution of problem (l)-_(4). Namely 

a 
ei j t”) = a3. 

v 
-$- cklp@klap9 + & B 0) 1 W1) 

Note that the Signorini boundary value problems considered in this paper describethe 
case when the possible area of contact is selected in advance and cannot grow with time (i.e., 
the greatest possible area of contact is selected), although the presence of contact at any 
given point is not assumed in advance but is determined only as a result of solving the problem. 
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NON-LINEAR DEFORMATIONS AND LIMIT EQUILIBRIUM OF 
THREE-DIMENSIONAL CURVILINEAR RODS* l 

I.V. SHIRK0 

The stress and deformation state of three-dimensional curvilinear rods of 
circular cross-section is investigated byond the elastic limit. The Kirchhoff- 
Love hypotheses used. The rod defromations'are assumed to be small, but 
the displacements and the angles of rotation of the central line are 
arbitrary. The relation between the deformation and the stress states in 
the plastic region of the material is taken in the form of a linear relation 
/I/ between the deformation rates and stresses. The coefficients of the 
equations of this connection are assumed to be specified (for example in 
the form of a table) by functions of stress components, deformations, time, 
temperatures, etc. An appropriate selection of these coefficients enables 
one to describe various models of a solid deformable body. 

The method of linearizing the resolving system of equations proposed here enables us to 
use, for solving specific problems, computational algorithms developed in investigations of 
geometrically non-linear deformations of elastic rods. It is shown that under specific condi- 
tions the elastic kernel, whose cross-section is of elliptic form, degenerates either into a 
point or a line, and the rod cross-section passes into a purely plastic state. In the purely 
plastic state the relation between the moments and the force acting over the cross-section is 
finite, which in the space of generalized force factors (the dimensionless axial force, the 
twisting and bending moments) are fairly accurately approximated by a sphere. The application 

*Prikl.Matem.Mekhan. ,48,1,50-57,1984 
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of the Mises principle leads to relations of the type of an associated law. Numerical solu- 
tions are presented for a number of problems for an elastic-plastic and, also, for a rigid- 
plastic material. 

1. Basic SquatiOnS Of elastic-plastic deforuations. Consider a three-dimen- 
sional curvilinear rod of circular cross-section of radius R whose middle line is defined by 
the equation r =r(S), where s is the length of the arc of the middle line. 

We define in the rod cross-section normal to its middle line an orthogonal system of 
Cartesian coordinates x,y,z with unit vectors i,j ‘5. The unit vector r is directed along 
the tangent to the middle line so that &ids = T, and the direction of the i, j axes that 
lie in the cross-section plane can be selected arbitrarily (they may coincide or make a spec- 
ific angle with the intrinsic trihedron axes). The radius vector of an arbitrary point of 
the rod can now be represented in the form 

e (I, y, s) = r (s) + si + yj 

We introduce for the orthogonal basis ' ' r,J, r the Darboux vector k(s) which is defined 
by the equations 

di/ds = Ik (s) x i (s)], dj/ds = [k(s) x j (s)l, drlds = lk (s) x t (s)l 

and shows by what amount the trihedron rotates on transferring from one point of the rod 
axis to another infinitely close point. 

Let us consider the deformed state, denoting all respective quantities by a prime. By 
the Kirchhoff-Love hypotheses, the unit vectors i',j',T' form, as before, an orthogonal basis, 
and any arbitrary points of the rod cross-section that, prior to deformation, have in the 
basis i,j,~ coordinates x, y, retain them in the basis i),j),T'. 

Denoting by k’ the Darboux vector of the triheron i' , f , r’ , for the deformed state we 
have 

add3 = 71 (1.1) 

ai'/& = [k' x i'], dj’lds = [k’ x j’l, drlds = [k’ x ~'1 
(1.2) 

We introduce the relative deformation vector of the middle line of the rod 

x=k’-k (1.3) 

with components x, =x1, xy =x1, xz =5x8, that defines the difference of the angle of rotation 
of two infinitely close cross sections resulting from the deformation of the middle line of 
the rod. 

Using the Kirchhoff-Love hypotheses, we can express the deformation components of arbit- 
rary points of the rod cross-section in terms of the components of the vector x as 

e, = e, = Ed +yx, +m,; 11'~. = e, = --x,yi2; ybrr = eQ =x,x/2 (1.4) 

Henceforth we shall call the components of the vector x and the magnitude of the relative 
length of the middle line of the rod e, =x1 the curvature (deformation) parameters of the 
middle line. 

Substituting deformations (1.4) into Hooke's law, for the stress components we obtain 

a, = a, = E (e, + yx, + z+,), T,, = ua = --Gx,y, rYz = 03 = %r (1.5) 

where E and G are the moduli of elasticity of the first and second kind. 
The stress state of the rod may be definedby the resulting quantities related to the 

whole rod thickness: the moments and forces expressed in terms of the stress components in 
the form 

M,=M1=~~a,ydF, M,=Ma=&gdF 

N, = Me=-- 1s ur dF, M, = Mz = 1s (z,x - T,,y) dF 

(1.6) 

These quantities must satisfy the equilibrium equations which can be convenientlywritten 
in the vector form /2/ 

dbflds = IN x T'l _t m, dNlds' = g (1.7) 

where m and q are, respectively, the vectors of the external distributed moment and external 
load. 

Substituting the stress components (1.5) into (1.6), we obtain 

Mi = JijeX,, i, j = 1, . , ., 4 (1.8) 

The matrix of elastic stiffnesses is diagonal and constant, and its coefficients have 
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the form ~~~~ = 522' = JE, Jae = GJ,, J4; = EF, where J = nR’l4, Jp = dPl:! are the moments of 

intertia, and F = nRZ is the area of cross-section of the rod. 
Equations (l.l), (1.3), (1.8) completely define the stress-strain state of an elastic 

rod, and can be used to obtain the usual Clebsh-Kirchoff-Love equations /3/. 
Substituting the stress components (1.5) into the Mises plasticity conditions, we obtain 

the equation 

VJ? (sO + x,y + x# + G%c,~ (9 + y’) = T,~ (1.9) 

that defines in the xy plane an ellipse whose center does not coincide with the centre of 
gravity of the cross-section, when %#O. As long as the deformations are small, the rod 
cross-section is in the elastic state and, consequently, lies entirely inside the ellipse (1.9). 
Assuming that all the distortion parameters are positive , plasticity first appears 
contour of the rod at a point with coordinates 

and from Eq.(1.9) it follows that the distorition parameters satisfy the condition 

on the 

(1.10) 

where we have introduced the distortion parameters 

qx= q, = 

In space &Q,Q, 5 Eq.(l.lO) defines a surface whose intersection by the deformation 
trajectory of the rod cross-section passes from the elastic to the elastic-plastic state. 

For a fairly wide class of models of the mechanics of a solid deformable body (an ideally 
plastic body, and elastic-plastic reinforcing material, a visco-plastic-elastic material, etc.) 
the relation between the deformation and stress tensor components, outside the elastic limits, 
with the notation introduced in (1.41, (l.S), may be represented in the form 

si' = ai,q’ + bi, i, j = 1, 2, 3 (1.11) 

Here and subsequently the recurring subscripts indicate summation, and a dot denotes 
differentiation with respect to time or some other monotonically changing parameter defining 
the development of the process. 

The equati.ons linking the stressed and deformed state of the material of the form of 
(1.11) was first used in /l/, when investigating the non-linear deformations of shells of 
revolution. A method of deriving the coefficients ail, bl for the deformation theory of 
plasticity, the theory of plastic flow with isotropic and translational reinforcement, of the 
generalized Maxwell model, etc. was also described. 

Assuming the deformation process to be monotonic and differentiating relations (l.S), 
(1.6) with respect to time, we obtain the equations 

Mi' = J,,‘x,’ + Bj, i, j = 1, . . a( 4 (1.12) 

that link the time derivatives of the axial force and moment ccunponents with the time deriva- 
tives of the deformation parameters. 

The form of the coefficients of the matrix UJU is shown by the first row of thatmatrix 

Jll = SS Eya dF + 5s amya dF, JIs = E ‘$ xy dF -+ 1s aim dF 
Fe Fp Fe FF 

JIS = S’j (allya + wcv) 0, 
Fp 

JU = E ‘js Y dF + $ ally dF 
P 

(1.13) 

&=SS &ydF 
PP 

where P and FPare, respectively, the areas of the elastic and plastic region of the rod 
cross-section. 

The system of 20 scalar non-linear differential equations (1.11, (1.21, (1.7), (1.12) 
containing 20 unknown functions completely define the stress-strain state of a three-dimen- 
sional curvilinear rod, and, in general, can only be solved numerically. 

The solution of that system may be obtained by "step-by-step linearization" as used when 
analysing shells /l/ and in /4/ for three-dimensional curvilinear elastic rods. The essence 
of the method is the splitting of the deformation process into small time steps bt, and 
calculating for each time layer not the functions required but their increments in time for a 
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rod of the form obtained as a result of the preceding step. To obtain the respective system 
of resolving differential equations we multiply formulas (1.12) by 6t and write it in the 
form 

8Mi = /ijSXj + B,6t (1.13) 

This is follows by differentiation of the remaining 16 equations with respect to t, and 
again, multiplication by ht. 

The system of differential equations thus obtained, which is linear with respect to the 
increments of the unknown functions, is exactly the same as the system of elastic rods /4/. 

With this approach the solution of the problem of elastic de.formations of a three-dimen- 
sional curvilinear rod differs from the solution of the similar elastic-plastic problem only 
in the form of the stiffness matrix IlJlj. With elastic deformationsitis diagonal and its co- 
efficients are constant, while for elastic-plastic deformations (1.14) its coefficients are 
functions of the deformation parameters and of stress tensor components, and to determine them 
we have the necessary equations (l.ll), (1.13). Note that the problem of evaluating integrals 
(1.13) can be simplified considerably, if the quantities ail and b, in Eqs.Cl.11) are indepen- 
dent of the stress components. The feasibility of this representation of the equations of an 
elastic-plastic material was investigated in detail in /5/. In that case it is necessary to 
store in the computer memory for the rod cross-sections considered only four values of the 
deformation parameters that define the deformation components (1.4) at each point of the cross- 
section. Otherwise it is necessary to store in the computer memory the complete stress compon- 
ent distributions in the plastic regions of the cross-sections considered that are necessary 
for evaluating integrals (1.13). 

2. The limit equilibrium. The theory of the limit equilibrium of three-dimensional 
curvilinear rods may be obtained independently of the equations of elastic-plastic deformation 
considered in the preceding section. 

To do this let us assume that all rod cross-sections are in the plastic state; thematerial 
is ideally rigidly plastic, and obeys the St.Venant-Love-Mises equations of plastic flow. In 
this case, the stress tensor components are connected with the components of the rates of 
change of the deformation parameters as follows: 

where H is the intensity of the shear deformation rate. 
Substituting the stress components (2.1) into (1.6), we obtain 

M,=3r, 
ss (&' + X,Y i- \‘4 Y g 

My = 37, 
ss 

(eo' + x,'y t- %,'z)s + 

. 
Mz=r, 

ss 
%,'(E* + y')-$-, N,= 37. ss 

(e,' + %,'y + %y'r)-$ 

(2.2) 

We will express the curvature components % I * Xy’ in terms of new quantities 

%,'=%'c0s~, %,'=s'sinq (2.3) 

x-= v/X;a + %'a, tg'l=\'l%x' (2.4) 

and introduce the new system of coordinates 217 Yl rotated by an angle 7 in the positive 

direction relative to the x, y system of coordinates 

r1 = 5 cos n + y sin n, y, = y cos 11 -5 sin rl (2.5) 

Subsituting (2.3) into the first two integrals (2.2) and making the change of variables 

(2.5), after simple algebra we obtain 

M,= M,sinn, My= M,COS~ (2.6) 

M,, = SS &,%*x1* [3(eo' - %'z# + %,'*(zl* + ylz)]-'/' dF (2.7) 

Note that the curvature components XX'+ %y' appear in expression (2.7) only in terms of 

their modulus x' (2.4). 
Formulas (2.2), (2.6), (2.7) show that the four quantitiesM*depend only on three vari- 

ables and, consequently, in four-dimensional space form the boundary surface 

F (Mi) = 0 (2.8) 
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(2.9) 

which may be represented in parametric form 

n=$!&=~ (,,-*,).$ 
I n ss 

MI 3 
rn,=p=x (2.2 + YP) tg e -$- 

n; 
ss 

3Jf/8 
my=*- 4 

ss 
dF -- @l --50)2--;i 

m, = m, sin r), m, = m, co3 7) 

x#J = EO'IX', tg e = xz'lx,' 

A = 13 (x1 -.x0)2 + tgs e (zr2 + yi*)l'/* 

N* = z, f%dP, M,* = 2~,nR8/3, Mv* = 4r,Ra/1/~ 

where the asterisk denotes the limit values of the moments and force. 
By evaluating the partial derivatives of Eq.(2.8) in the usual manner it can be shown 

that 
aF. 

&=h* (2 , .lO) 

where li is an undetermined multiplier, and there is not summation over the subscript i. I t 
follows from (2.10) that the rate vector of the deformation parameters is orthogonal to the 
boundary surface of the limit values in the four-dimensional space MI. 

Equations (2.6) show that the intersection of the boundary surface (2.8) by the plane 
Mz, MU always forms circles of variable radius Mv. Hence the complete representation of 

the boundary surface (2.8) gives its transform in the three-dimensional space n,&,m, shown 
in Fig.1. The lines on this surface correspond to a number of constant values of L/O =s,lR, 
*lo = 2e,/n. 

Analysis has shown that the boundary surface may be approximated with sufficient accur- 
acy by the sphere 

n* + m,2 + myP + %B = 1 (2.11) 

The sphere intersection with the plane ?I#& is shown in Fig.1 by the dashed line. In 
the remaining coordinate planes the lines of intersection of surfaces (2.9), (2.11) virtually 
coincide. 

To establish the relation between the deformation parameters and the resulting quantities 
under conditions (2.11) we use the Mises principle which states /6/ that for given increments 
of generalized deformations (6x,, 6X1, 6x,, be,) the generalized stresses (M,,M,, M,, N,) are 

,n 

Fig.1 Fig.2 

such that the work accomplished by plastic deformation has a stationary value. By determining, 
in the usual manner, the extremum of the function 

6A = N$e, + M&c, + M,&, + M&, 

subject to condition (2.11), we obtain 

(2.12) 
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where 6h is some positive scalar multiplier. These equations show that the use of the Mises 
principle results in the vector of the increements of the deformation components again being 
orthogonal to the boundary surface (2.11) defined in the four-dimensional space Mi. 

On the basis of (2.11) the quantities Mi are expressed by the three angles 9, ap, and n 
in the form 

M, = M,* ~0~11) sin cp, M, = M,* COSI# cos ‘p sin 11, M, = Mv* cos q ~0s cp cos 11 

Substituting these expressions into (2.12), we obtain 
(2.13) 

Se0=&sin*, 6x,=-$Pcos~cos~cos~ 
I Y 

(2.14) 

6*,=&Cos*sinrp. &x,=-+cos$cosipsin~ 
I 

If we assume that in the plastic region the relations of the deformation theory of 
plasticity hold, then in all calculations in this section the velocities of the deformation 
components xi' or their increments 6x1' must be replaced by the complete deformation components 
x1. 

3. Numerical examples. As an example consider the application of the equations 
derived above to the problem of changing the helix angle of a circular cylindrical spring. 

Let us assume that a circular rod of radius R is wound in the form of a spring with helix 
angle 'PO on an absolutely rigid circular cylinder of radius a-R in such a way that its 
middle line is defined by the equation 

z = 0 cost, y = a sin t, 2 = (0 tg cpo) t (3.1) 

We have to determine the force factors to be applied to the rod so that its middle line 
remains as before a helical line (3.1), but with a new helix angle 'pl. 

Let US suppose that the deformation is achieved without elongation of the rod axis, and 
that the line of rod contact with the cylinder remains, as before, the contact line during 
the whole deformation process. 

We will first consider this problem using the equations of limit equilibrium written for 
the deformation parameters. The system of coordinates z', y', 2' is directed along the axes of 
the natural trihedron so that the t' axis coincides with the principal normal. 

The components of the Darboux vector of the deformed state kx', ky '1 kz' are expressed in 
terms of the curvature k, and twist k, of the helical line (3.1) 

k, = 0, kv = k, cd ‘pLia. k. = kz = sin 'pl cos &a 

The vector components with respect to the deformation x are 

xI = 0, x, = (co3 'pl - cos' 'po)/a, xz = (sin 2m, - sin 200)/(2a) (3.2) 

Since the quantities (3.2) are independent of the arc length a, the resulting force 
factors (2.9) are also constant along the rod axis, and N, = M, =O, 11 =O, M,, =Mv-, 

Projecting on the x', y' and z' axes the equations of equilibrium (l-7), we find that 
three of them are satisfied identically, and the remaining three lead to the equations 

N, = M,.k, - M,k,, N, = 0, qx = N&z (3.3) 

Substituting (3.2) into (2.2) and noting that 

50 = 0, tg e = --ctg (cpl + cpo) 

we determine the bending moment and torque necessary to obtain the specified deformation traj- 
ectory. After this, from (3.3) we determine the shear force N, and the distributed load of 
the reaction qx. Note that in this case integrals (2.9) are evaluated in terms of elliptic 
integrals of the first and second kind, but in view of their complexity they are not given 
here. 

The solution of the problem is obtainedinsimpleclosedform,when the approximate formulas 

(2.13), (2.14) are used. 
Subsituting (3.2) for h,, 6x, and, also, he, = 0 into (2.14) we obtain 

whence it is possible to determine the angle cp and, then, using (2.13), the bending and twist- 
ing fioments. 

The results obtained the exact formula (2.9) and the approximate formula (2.13) are shown 
in Pig.2 by the dashed lines for bending a cylindrical spring from an initially rectilinear 
rod (cpO = n/2). They are in good agreement, and agree within the accuracy of the graph in Fig.2, 
where the reduced moments & = M,/M,* (curve I) and m, = iU,/M,*(curve 2) areplottedalongthe 
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ordinate axis andthehelix angle cp1 is shown in fractions of x12, i.e. q =&rim. 
The problem can also be solved using the elastic-plastic deformation equations of Sect.2. 

The only difference is that the deformation parameters (3.2) must be substituted into (1.12) 
instead of (2.9). The solution of the respective problem for an ideal elastic-plasticmaterial 
and the deformation theory of plasticity when 'pO = n/2, Rla = 10'# and z,lE = 7.2.1O-s are 
shown in Fig.2 by the solid lines. They are in good agreement with the results of the theory 
of limit equilibrium, beginning from the helix angles tp<0.8&. The disagreement observed 

at cp< O.W2 is explained by the fact that in the region of the n =8 plane the approx- 
imating sphere lies inside the surface (2.9). The results are virtually indistinguishable 
when the accurate relations are used. 
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AN APPROXIMATE METHOD OF OPTIMIZING THE SHAPE OF REINFORCEMENT RODS 
IN NON-UNIFORMLY AGING MATERIALS* 

A.D. DROZDGV and V.B. KOLMANOVSKII 

The problem of optimizing the shape of a rod made of a non-uniformly aging 
viscoelastic material and reinforced by an elastic material is considered. 
Geometrical and integral constraints are imposed on the area of cross-section 
of the rod. The optimum shape is selected to minimize the maximum deflection 
of the rod in a fixed time interval. An approximate method of optimizing 
the shape is proposed and justifiedin the case of slight creep of the material, 
Results of numerical calculations are presented. 

1. Statement of the problem of rod shape optimization. consider the bending 
of a rod of length L made from non-uniformly aging viscoelastic material and reinforced by 
an elastic material. The 0% axis is directed along the axis of the rod in the undeformed 
state. Me will denote by 1, (%), Z,, Z (%) th e moments of inertia of the cross-sections of the 
basic material, the reinforcing material, and the whole rod, respectively, and by S(E) the 
rod cross-section at the point %. The arrangement of the reinforcement is specified, and 
is independent of the coordinate %.' The rod moment of inertia i(%) and the area of cross- 
section S(E) are connected by the relation 

1 (E) = %Sn (&) (1.1) 

where n, a,, are given positive constants. The cross-sectional area of the rod is bounded 

o<s,,(s(%)g's,<~ (1.2) 

and the reinforcing material is completely covered by the viscoelastic material. The latter 
assumption is satisfied for example, when the reinforcement is in the region corresponding 
to the minimum possible area of cross-section that represents either a rectangle of constant 
thickness and varying width , or a rectangle of constant width and varying thickness, or a 


